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Abstract
Statistical properties of ensembles of random density matrices are investigated.
We compute traces and von Neumann entropies averaged over ensembles of
random density matrices distributed according to the Bures measure. The
eigenvalues of the random density matrices are analysed: we derive the
eigenvalue distribution for the Bures ensemble which is shown to be broader
then the quarter-circle distribution characteristic of the Hilbert–Schmidt
ensemble. For measures induced by partial tracing over the environment we
compute exactly the two-point eigenvalue correlation function.

PACS number: 03.65.Ta

1. Introduction

Analysing the density matrices of a finite size N, one is often interested in the properties of
typical states. In general the properties depend on the measure, according to which the random
density matrices are distributed. Nowadays it is widely accepted that it is not possible to single
out the only unique measure in the set MN of all density matrices of size N.

However, several possible measures are distinguished by different mathematical and
physical arguments. For instance, the Hilbert–Schmidt (HS) measure arises if one constructs
random pure states |�〉 distributed according to the natural (Fubini–Study) measure on the
space of pure states on a composite Hilbert space HN ⊗HN and obtains mixed states by partial
tracing, ρ = TrN(|�〉〈�|) [1]. Moreover, the HS measure may be defined by the HS distance,

DHS(ρ, σ ) =
√

Tr [(ρ − σ)2], (1.1)
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which induces the flat geometry in MN . For instance, the set of N = 2 mixed states analysed
with respect to the HS distance displays the geometry of the 3-ball (the Bloch ball), with the
Bloch sphere, containing the pure states, at its boundary.

Another measure in the space of mixed states, which should be distinguished, is the Bures
measure [2]. It is induced by the Bures metric [3, 4]

DB(ρ, σ ) =
√

2[1 − Tr (
√

ρσ
√

ρ)1/2]1/2 (1.2)

which is Riemannian and monotone. It is a Fisher-adjusted metric [5], since in the subspace
of diagonal matrices it induces the statistical distance [6]. Moreover, the Bures metric is
Fubini–Study adjusted, since at the space of pure states both metrics do agree [7]. These
unique features of the Bures distance are used to support the claim that without any prior
knowledge on a certain density matrix, the optimal way to mimic it is to generate it at random
with respect to the Bures measure.

In this work we analyse statistical properties of ensembles of random states. In section 2
we provide the definitions of the Hilbert–Schmidt and the Bures ensembles of random density
matrices and recall their joint distribution functions for their spectra. The expectation
values of the moments 〈Tr ρq〉 and von Neumann entropies are computed in section 3. In
section 4 we analyse the eigenvalue density of random states: the quarter-circle distribution
characteristic of the Hilbert–Schmidt ensemble is rederived and compared with an explicit
distribution computed for the Bures ensemble. Section 5 is devoted to the ensembles of
random matrices obtained by partial tracing, for which the average traces and the eigenvalue
correlation functions are computed.

2. Ensembles of random states

We are concerned with ensembles of random states, for which the probability measure has a
product form and may be factorized [2, 1],

dµx = dνx(λ1, λ2, . . . , λN) × dh. (2.1)

The latter factor, dh, determining the distribution of the eigenvectors of the density matrix,
is the unique, unitarily invariant, Haar measure on U(N). On the other hand, the first factor
describing the distribution of eigenvalues λi of ρ depends on the measure used (the label x
denotes any of the product measures investigated).

The Hilbert–Schmidt measure induces the following joint distribution function in the
simplex of eigenvalues [2, 1]:

PHS(�λ) = �(N2)∏N−1
j=0 �(N − j)�(N − j + 1)

δ


1 −

N∑
j=1

λj


 N∏

i<j

(λi − λj )
2. (2.2)

This distribution may be considered as a special case of the family of measures induced by
partial tracing. Consider a pure state of |�〉 ∈ HN ⊗ HK of a composite bi-partite system of
size N ×K . Tracing over the K-dimensional environment, one obtains a mixed state of size N,
namely ρ = TK(|�〉〈�|). A natural assumption that |�〉 is a random pure state distributed
according to the unique, unitarily invariant measure on the set of pure states leads to the family
of measures

PN,K(�λ) = �(KN)∏N−1
j=0 �(K − j)�(N − j + 1)

δ


1 −

N∑
j=1

λj


 ∏

i

λK−N
i

∏
i<j

(λi − λj )
2, (2.3)
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labelled by the size K of the environment. Such induced measures have been discussed many
times in the literature [8–10], while the normalization constant was derived in [1]. Note that
in the symmetric case K = N the induced measure reduces to the Hilbert–Schmidt measure
(2.2).

It is worth emphasizing a link to known ensembles of random matrices. In order to
construct a random density matrix according to the measure µN,K it is sufficient to generate a
rectangular Gaussian matrix X of size N × K and to compute ρ = X†X/Tr (X†X) [1]. In the
special case K = N this fact shows a relation between the Ginibre ensemble of non-Hermitian
random matrices [11] and the Hilbert–Schmidt measure.

The Bures measure in the simplex of eigenvalues may be derived from an assumption that
any ball in the sense of the Bures distance of a fixed radius belonging to the set MN has the
same volume. The Bures probability distribution in the simplex of eigenvalues was obtained
by Hall [2]

PB(�λ) = CN

δ(λ1 + λ2 + · · · + λN − 1)√
λ1λ2, . . . , λN

∏
i<j

(λi − λj )
2

λj + λj

. (2.4)

The normalization constants CN were found by Slater [12] for low values of N, while the
general formula

CN = 2N2−N �(N2/2)

πN/2
∏N

j=1 �(j + 1)
(2.5)

was derived in [13]. The volume of the set of mixed quantum states and the area of its boundary
were computed with respect to both measures in [14, 13].

3. Expectation values

To characterize the extent to which a given state ρ is mixed, one may use the moments, Tr ρq ,
with any q > 0. The simplest to compute is the second trace r = Tr ρ2, called purity, which
is closely related to the linear entropy 1 − r and inverse participation ratio, R = 1/r . Mean
purity averaged over the HS measure is smaller then the average over the Bures measure,

〈Tr ρ2〉HS = 2N

N2 + 1
< 〈Tr ρ2〉B = 5N2 + 1

2N(N2 + 2)
. (3.1)

This result reflects the fact that the Bures measure is more concentrated on the states of higher
purity, than the Hilbert–Schmidt measure [1]. It is not so simple to get such results for an
arbitrary exponent q. However, it is easier to perform averaging in the asymptotic regime,
N � 1. Mean traces, averaged over the Hilbert–Schmidt measure are

〈Tr ρq〉HS = N1−q �(1 + 2q)

�(1 + q)�(2 + q)

(
1 + O

(
1

N

))
. (3.2)

The analogous average with respect to the Bures measure reads

〈Tr ρq〉B = N1−q2q �[(3q + 1)/2]

�[(1 + q)/2]�(2 + q)

(
1 + O

(
1

N

))
. (3.3)

Again we find 〈Tr ρq〉HS < 〈Tr ρq〉B. As a measure of the degree of mixing one often uses
the von Neumann entropy, S(ρ) = −Tr ρ ln ρ. It varies from S(ρ) = 0 for any pure state and
S(ρ) = ln N for the maximally mixed state. Since S(ρ) = −limq→1 ∂ Tr ρq/∂q the mean
von Neumann entropy may be obtained by differentiation of (3.2) and (3.3) with respect to the
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parameter, 〈S〉 = −limq→1〈∂ Tr ρq/∂q〉 = −limq→1 ∂〈Tr ρq〉/∂q. The results are

〈S(ρ)〉HS = ln N − 1

2
+ O

(
ln N

N

)
(3.4)

for the Hilbert–Schmidt measure and

〈S(ρ)〉B = ln N − ln 2 + O

(
ln N

N

)
(3.5)

for the Bures measure. Note that the former result is larger, since the HS measure favours
more mixed states. Although the mean value of the traces with respect to the HS measure
have appeared several times in the literature [8–10], the results for the Bures measure are new.
Their derivation is sketched in the appendix. Using the expansion of the generating functions
there, it is possible to give some more moments for the Bures measure. We compare them
with the previously known Hilbert–Schmidt averages:

〈Tr ρ3〉HS = 5N2 + 1

(N2 + 1)(N2 + 2)
, 〈Tr ρ3〉B = 8N2 + 7

(N2 + 2)(N2 + 4)
, (3.6)

〈Tr ρ4〉HS = 14N3 + 10N

(N2 + 1)(N2 + 2)(N2 + 3)
, 〈Tr ρ4〉B = 21(11N4 + 25N2 + 4)

8N(N2 + 2)(N2 + 4)(N2 + 6)
.

(3.7)

4. Distribution of eigenvalues

We are going to evaluate the distribution of the rescaled eigenvalue x := Nλ1 in the limit of
large dimension N of density matrices. To derive the probability distribution P(x), we analyse
qth moments of these distributions. For the Hilbert–Schmidt measure we obtain

fHS(q) =
∫

PHS(x)xq dx = 1

π
22q �(q + 1/2)�(1/2)

�(q + 2)
, (4.1)

while the moments for the Bures measure are

fB(q) =
∫

PB(x)xq dx = 1

2π
2q33q/2 �(q/2 + 1/6)�(q/2 + 5/6)

�(q + 2)
. (4.2)

The above results follow from equations (3.2), (3.3) by use of the duplication and triplication
formula for the Gamma function. They allow us to obtain the explicit form of the level density,
exact in the asymptotic limit of large N. The distribution obtained for the HS measure

PHS(x) = 1

2π

√
4

x
− 1 for x ∈ [0, 4] (4.3)

diverges as x−1/2 for x → 0 and becomes a quarter-circle law in the rescaled variable, y = √
x;

see figure 1. It is comforting to verify that this law forms a special case of the distribution
obtained by Page for the induced measures [10] and later derived in a different context in [15].
On the other hand, the distribution for the Bures measure

PB(x) = 3

4aπ




(
a

x
+

√(a

x

)2
− 1

)2/3

−
(

a

x
−

√(a

x

)2
− 1

)2/3

 for x ∈ (0, a]

(4.4)

is defined on a larger support, x � a = 3
√

3, and diverges for x → 0 as x−2/3. Level repulsion
for the Bures ensemble compared to the HS ensemble will be reduced at x = 0 but enhanced
at the maximum of the spectrum.
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Figure 1. Level density of random density matrices P(x) for Bures measure (dashed line) and
Hilbert–Schmidt measure (solid line) (a). The latter becomes a quarter-circle distribution in the
rescaled variable, y = √

x (b).

The above distributions may be derived in an alternative way by minimization of the
action functional

AHS = −
∫

dx dx ′P(x)P (x ′) ln|x − x ′| (4.5)

for the HS measure, and

AB = AHS +
1

2

∫
dx dx ′P(x)P (x ′) ln(x + x ′) (4.6)

for the Bures measure. Both (unknown) solutions of these minimization problems should
satisfy the normalization condition,

∫
P(x) dx = 1 and the relation induced by the unit trace

constraint,
∫

xP (x) dx = 1. Both conditions can be implemented with the help of Lagrange
multipliers. The resulting integral equations for P(x) may be solved by the Green function

G(t) =
∫

dx
P (x)

x − t
(4.7)

where the cut along the real axis gives the densities (4.3), (4.4). The Hilbert–Schmidt measure
leads to a rather simple Green function

GHS(t) = 1

2

(√
1 − 4

t
− 1

)
, (4.8)

for t < 0 and otherwise given by analytic continuation, corresponding to (4.3). The Green
function corresponding to the Bures measure is more complicated

GB(t) = 1

6

(
z +

1

z
− 1

)
with z =

(
−a

t

)2/3


1 −

√
1 −

(
t

a

)2



2/3

(4.9)

for −a < t < 0 (otherwise given by analytic continuation) and leads to the distribution (4.4).
The Green functions fulfil the generalized Pastur equations [16]

GHS(t) = −1/t

1 + GHS(t)
and GB(t) = −1/t√

1 + 2GB(t)
, (4.10)

which suggests an interpolation formula between the Hilbert–Schmidt measure (α = 1) and
the Bures measure (α = 2):

Gα(t) = −1/t

[1 + αGα(t)]1/α
. (4.11)
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It would be interesting to analyse the family of interpolating measures which lead to the above
Green functions.

5. Eigenvalue density and eigenvalue correlation for induced measures

In this section we are going to investigate statistical properties of the induced measures (2.3)
defined in the space MN of density matrices of size N. An integer K � N , represents the size
of an environment and may be treated as a parameter labelling the measure.

5.1. Eigenvalue density

The one-point density P(λ) is obtained from the Green function

G(λ) =
〈

1

N

∑
i

1

λi − λ

〉
N,K

with P(λ) = 1

π
Im G(λ + iδ), (5.1)

and the Green function will be derived from the generating function

Z(µ) =
〈∏

i

(
λi − µ

λi − λ

)〉
N,K

with G(λ) = − 1

N

∂

∂µ
Z|µ=λ. (5.2)

Due to the structure of PN,K with the van der Monde determinant we may write Z(µ) as
inverse Laplace transform of a determinantal function:

Z(µ) ∝
∫ +i∞+ε

−i∞+ε

ds

2π i
es det

(∫ ∞

0
dx e−sxxK−N+i+j−2

(
x − µ

x − λ

))
(5.3)

with i, j = 1, 2, . . . , N . From this we immediately obtain

G(λ) = �(KN)

N

∫ +i∞+ε

−i∞+ε

ds

2π i

es

sKN

N∑
i,j=1

W−1
j,i

∫ ∞

0
dx

e−sxxK−N+i+j−2

(x − λ)sK−N+i+j−1
. (5.4)

Here the matrix W of size N is given by

Wi,j = �(K − N + i + j − 1). (5.5)

An explicit form of the matrix W−1 reads

(W−1)i,j = (−1)i+j

N∑
k=max(i,j)

(
k − 1

i − 1

)(
k − 1

j − 1

)
�(K − N + k)

�(k)�(K − N + i)�(K − N + j)
. (5.6)

It turns out that the x integral in equation (5.4) contributes only for x < 1 and we obtain the
result

G(λ) = �(KN)

N

N∑
i,j=1

W−1
j,i

∫ 1

0
dx

xK−N+i+j−2(1 − x)KN−(K−N+i+j)

�[KN − (K − N + i + j − 1)](x − λ)
. (5.7)

The normalization constant in equations (5.4), (5.7) has been restored by the known asymptotic
behaviour of G(λ). Thus we immediately obtain the density

P(λ) = �(KN)

N

N∑
i,j=1

W−1
j,i

λK−N+i+j−2(1 − λ)KN−(K−N+i+j)

�[KN − (K − N + i + j − 1)]
. (5.8)
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The above rather complicated form of obtaining the density already derived by Page [10],
allows us to calculate the moments with the help of Euler’s beta-function

〈λq〉 = �(KN)

N�(KN + q)

N∑
i,j=1

W−1
j,i �(K − N + i + j − 1 + q). (5.9)

From this follows the mean von Neumann entropy

〈S〉 = −N〈λ ln λ〉 = ψ(KN + 1) − 1

KN

∑
i,j

W−1
j,i �(K − N + i + j)ψ(K − N + i + j)

(5.10)

where ψ(x) is Euler’s digamma-function = �′(x)/�(x), and where we have suppressed the
index N,K at the angular brackets. The result for the average entropy has been conjectured by
Page [10], and later proved in [17–19]. It is a rational number. All the formulae are valid for
K � N . Again for K < N one has to interchange K and N, obtaining density and moments
of the K positive eigenvalues.

One may explicitly give some average traces over the induced measure µN,K :

〈Tr ρ2〉 = K + N

KN + 1
, 〈Tr ρ3〉 = (K + N)2 + KN + 1

(KN + 1)(KN + 2)
, (5.11)

〈Tr ρ4〉 = (K + N)[(K + N)2 + 3KN + 5]

(KN + 1)(KN + 2)(KN + 3)
, (5.12)

the first of which has appeared already in the paper of Lubkin [8], while the others are consistent
with the recent work of Malacarne et al [20]. To find the coefficients of the polynomial in
the denominator it is useful to know its order and symmetry as can be found going back to
a Gaussian integral writing the density matrix as a matrix of Wishart form ρ = ψψ †. In
principle they are contained in formula (5.9).

5.2. Eigenvalue correlation

The eigenvalue correlation can be obtained from the Green function correlation〈
1

N

∑
i

1

λi − λ

1

N

∑
i

1

λi − µ

〉
, (5.13)

which can be derived from the generating function〈∏
i

(
(λi − κ1)(λi − κ2)

(λi − λ)(λi − µ)

)〉
. (5.14)

The result for the two-eigenvalue density P(λ,µ), which can be obtained along the same lines
as in section 5.1 is then

P(λ,µ) = θ(1 − λ − µ)
�(KN)

N(N − 1)

N∑
i,j,k,l=1

[
W−1

j,i W−1
l,k − W−1

l,i W−1
j,k

]

× λK−N+i+j−2µK−N+k+l−2(1 − λ − µ)KN−2K+2N−i−j−k−l+1

�(KN − 2K + 2N − i − j − k − l + 2)
. (5.15)

We have checked P(λ) = ∫
P(λ,µ) dµ. In order to prove this, scale µ with 1 − λ, integrate

over µ with the help of Euler’s beta-function and use equation (5.5). Then the factor N − 1 in
the denominator of equation (5.15) cancels and the result is equation (5.8). The first bracket
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under the sum in (5.15) ensures level repulsion ∝ (λ−µ)2 for λ−µ → 0. Furthermore there
is additional repulsion from the boundaries at λ = 0, µ = 0, 1 − λ − µ = 0.

It is again easy to calculate the moments with the help of Euler’s beta-function

〈λLµM〉 = �(KN)

N(N − 1)�(KN + L + M)

N∑
i,j,k,l=1

[
W−1

j,i W−1
l,k − W−1

l,i W−1
j,k

]
×�(K − N + i + j − 1 + L)�(K − N + k + l − 1 + M). (5.16)

For the entropy correlation we have

〈SS〉 = N(N − 1)〈λ(ln λ)µ(ln µ)〉 + N〈λ2(ln λ)2〉, (5.17)

which can be obtained by double differentiation of 〈λLµM〉 and 〈λL+M〉 with respect to L and
M at L = M = 1. Again one may obtain formulae for K < N by interchange of K and N.

6. Concluding remarks

It is well known that that there is no single, naturally distinguished probability measure in the
set of mixed quantum states of a fixed size N. Guessing a mixed state randomly without any
additional information whatsoever, it is legitimate to use the Bures measure (2.4), related to
the statistical distance and distinguishability. On the other hand, if it is known that the mixed
state has arisen by the partial tracing over a K-dimensional environment, one uses the induced
measure (2.3), which reduces to the Hilbert–Schmidt measure in the special case K = N .

In this work we investigated statistical properties of ensembles of density matrices of a
fixed size generated according to the Bures or the Hilbert–Schmidt measure. We computed
the averages over the set of mixed quantum states with respect to both measures and derived
the level density in the asymptotic limit of large matrices. Furthermore, for measures obtained
from random pure states of a composite system by partial tracing we computed the one-point
eigenvalue density, the exact two-point eigenvalue density, the corresponding moments and
average entropies. On one hand, results concerning average traces and average entropy may
be useful from the point of view of the theory of quantum information [21]: the von Neumann
entropy of a mixed state ρ is equal to the entanglement of the pure state |�〉 belonging to a
composed Hilbert space, which purifies ρ. On the other hand, results obtained contribute to the
theory of random matrices: the ensembles of random density matrices distributed according
to the Bures measure display different properties then the standard Gaussian ensembles of
Wigner and Dyson [11].

It is worth adding that the ensembles of random states analysed in this work do not cover
all the cases of a physical interest. For instance, it is natural to assume that in a concrete
experiment a mixed state ρ is formed by applying a known quantum channel � (completely
positive, trace preserving map) on a random pure state,

ρ = �(|ψ〉〈ψ |). (6.1)

Without any information concerning the pure state |ψ〉 ∈ HN one has to assume that it is
generated according to the natural Fubini–Study measure in the set of pure states. In this
manner any quantum channel � induces by (6.1) a certain measure in the space of mixed
quantum states. Hence it would be interesting to repeat the computation performed in this
work for ensembles of mixed states obtained by physically motivated quantum channels. Such
research will be a subject of a forthcoming publication.
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Appendix. Moments for Bures measure

One may derive all moments for the Bures distribution PB(ρ) from a Laguerre-type ensemble

P L
B (ρ) ∝ θ(ρ) e−Tr ρ

1,...,N∏
i,j

(λi + λj )
−1/2, (A.1)

where λi denote eigenvalues of ρ. Moments are related by∫
Mp(ρ)PB(ρ)Dρ = �(N2/2)

�(N2/2 + p)

∫
Mp(ρ)P L

B (ρ)Dρ, (A.2)

where Mp(ρ) is a homogeneous function of ρ of degree p and Dρ is the matrix volume element
of a Hermitian matrix. Next we may write

P L
B (ρ) ∝ θ(ρ)

∫
DA e−Tr [ρ(1+A2)] (A.3)

with a Hermitian matrix A. Let us denote its eigenvalues by {Ai}. In the following we use the
formula [13]:

θ(ρ) e−Tr (ρε) = BN det(δ/δρ + ε)−Nδ(ρ) (A.4)

with a positive definite Hermitian matrix ε and

BN = πN(N−1)/2�(1)�(2) · · · �(N). (A.5)

Note that on the left-hand side of equation (A.4) there is the restriction ρ � 0, while on the
right-hand side we have no restriction on integration for ρ. With the above formula it is easy
to compute the matrix Laplace transform∫

e−Tr (Eρ)P L
B (ρ)Dρ ∝

∫
DA det(E + 1 + A2)−N (A.6)

with a non-negative matrix E of size N. For E = 0 this formula leads to the normalization
constant for the Bures measure [13]. Let {E1, . . . , EN } denote the eigenvalues of E. With
the help of the Itzykson–Zuber integral [22, 23] the right-hand side of equation (A.6) is
proportional to ∫

dA1, . . . , dAN

[�(A)]2

�(A2)�(−E)
det

[
1

1 + A2
i + Ej

]
(A.7)

with the van der Monde determinant �(A) = ∏
i<j (Ai − Aj). Finally one may perform the

Ai integrations in the complex plane, arriving at the generating function

ZL
B(E) =

∫
e−Tr (Eρ)P L

B (ρ)Dρ =
1,...,N∏

i,j

2√
1 + Ei +

√
1 + Ej

. (A.8)

This expression has a rather simple expansion in powers of E. It starts like

ZL
B(E) = 1 − N

2

∑
Ei +

(
N2

8
+

1

16

)(∑
Ei

)2

+
3N

16

∑
E2

i + O(E3). (A.9)
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Thus it is possible to obtain all moments by matrix derivation, e.g.

〈Tr F(ρ)〉L
B = Tr F(−δ/δE)ZL

B(E)|E=0. (A.10)

The corresponding generating function for the Hilbert–Schmidt measure is even more simple
and reads

ZL
HS(E) =

∫
e−Tr (Eρ)P L

HS(ρ)Dρ =
N∏

i=1

1

(1 + Ei)N
. (A.11)

Its expansion starts like

ZL
HS(E) = 1 − N

∑
Ei +

N2

2

( ∑
Ei

)2

+
N

2

∑
E2

i + O(E3). (A.12)

To obtain the matrix derivatives δ/δE is not so easy in general, since everything is expressed
in eigenvalues Ei e.g.

〈Tr ρq〉L
B = Tr (−δ/δE)qZL

B(E)|E=0 = 1

�(E)

N∑
i=1

(−∂/∂Ei)
q[�(E)ZL

B(E)]|E=0. (A.13)

One can proof the last equation with the help of the Itzykson–Zuber integral. The above
formulae were used to derive the few results for Bures moments in section 3.
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